Binding properties and adhesion-mediating regions of the major sheath protein of Treponema denticola ATCC 35405.

نویسندگان

  • Andrew M Edwards
  • Howard F Jenkinson
  • Martin J Woodward
  • David Dymock
چکیده

There is growing evidence that a number of oral Treponema species, in particular Treponema denticola, are associated with the progression of human periodontal disease. The major sheath (or surface) protein (Msp) of T. denticola is implicated in adhesion of bacteria to host cells and tissue proteins and is likely to be an important virulence factor. However, the binding regions of the Msp are not known. We have purified from Escherichia coli recombinant Msp (rMsp) polypeptides corresponding to the following: full-length Msp (rMsp) minus 13 N-terminal amino acid (aa) residues, an amino-terminal fragment (rN-Msp, 189 aa residues), a 57-aa residue segment from the central region (rV-Msp), and a C-terminal fragment (rC-Msp, 272 aa residues). rMsp (530 aa residues) bound to immobilized fibronectin, keratin, laminin, collagen type I, fibrinogen, hyaluronic acid, and heparin. The N- and V-region polypeptides, but not rC-Msp, also bound to these substrates. Binding of rMsp to fibronectin was targeted to the N-terminal heparin I/fibrin I domain. Antibodies to the N-region or V-region polypeptides, but not antibodies to the rC-Msp fragment, blocked adhesion of T. denticola ATCC 35405 cells to a range of host protein molecules. These results suggest that the N-terminal half of Msp carries epitopes that are surface exposed and that are involved in mediating adhesion. Binding of rMsp onto the cell surface of low-level fibronectin-binding Treponema isolates conferred a 10-fold increase in fibronectin binding. This confirms that Msp functions autonomously as an adhesin and raises the possibility that phenotypic complementation of virulence functions might occur within mixed populations of Treponema species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple functions of the leucine-rich repeat protein LrrA of Treponema denticola.

The gene lrrA, encoding a leucine-rich repeat protein, LrrA, that contains eight consensus tandem repeats of 23 amino acid residues, has been identified in Treponema denticola ATCC 35405. A leucine-rich repeat is a generally useful protein-binding motif, and proteins containing this repeat are typically involved in protein-protein interactions. Southern blot analysis demonstrated that T. dentic...

متن کامل

Dentilisin involvement in coaggregation between Treponema denticola and Tannerella forsythia.

Periodontitis arises from a biofilm consisting of gram-negative anaerobic rods and spirochetes. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, termed the Red complex, have been co-isolated with high frequency from chronic periodontitis lesions, and these microorganisms are thought to be major pathogens of the disease. Coaggregation is an important strategy in the colon...

متن کامل

The chymotrypsin-like protease complex of Treponema denticola ATCC 35405 mediates fibrinogen adherence and degradation.

Treponema denticola is an anaerobic spirochete strongly associated with human periodontal disease. T. denticola bacteria interact with a range of host tissue proteins, including fibronectin, laminin, and fibrinogen. The latter localizes in the extracellular matrix where tissue damage has occurred, and interactions with fibrinogen may play a key role in T. denticola colonization of the damaged s...

متن کامل

Characterization of a potential ABC-type bacteriocin exporter protein from Treponema denticola

BACKGROUND Treponema denticola is strongly associated with the development of periodontal disease. Both synergistic and antagonistic effects are observed among bacterial species in the process of biofilm formation. Bacteriocin-related genes have not yet been fully characterized in periodontopathic bacteria. The aim of this study was to detect and characterize bacteriocin-associated proteins in ...

متن کامل

Filamentous actin disruption and diminished inositol phosphate response in gingival fibroblasts caused by Treponema denticola.

Previous reports have shown that Treponema denticola causes rearrangement of filamentous actin (F-actin) in human gingival fibroblasts (HGF). The purpose of this investigation was to determine the effect of T. denticola on the generation of inositol phosphates (IPs) in relation to a time course for F-actin disruption in HGF. Cultured HGF were exposed to washed cells of T. denticola ATCC 35405 f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 73 5  شماره 

صفحات  -

تاریخ انتشار 2005